5-CYCLOPENTYL-5-HYDROXYPENTANOIC AND 4-(2'-HYDROXYCYCLOHEXYL)-BUTANOIC ACIDS LACTONES OBTENTION BY ANODIC OXIDATION OF 1-DECALONE

Fructuoso Barba*, Antonio Guirado, Isidoro Barba and Marcelo Lopez

Department of Organic Chemistry, Faculty of Sciencie

University of Murcia, Spain

The 1-decalone anodic oxidation products in alkaline hydroalcoholic medium with platinum anode are identified. The 5-cyclopentyl-5-hydroxypentanoic acid lactone formation evidence a ring contraction process through a carbocationic intermediate.

The electrolysis of 1-decalone solutions in EtOH-Na $_2$ CO $_3$ aq. 0,1 M in 1:1 ratio, carried out under constant current intensity conditions, with platinum anode and cathode in an undivided cell, gave two reaction products, 4 and 5. 5 was the major product. GC-MS analysis showed for both products the same molecular weigth, but different fragmentation paths; 4 m/e (relative intensity) 168 M $^+$ (10), 150(6), 84(88), 67(40), 55(50), 42(76), 41(100), 39(78); 5 m/e (relative intensity) 168 M $^+$ (8), 150(13), 140(12), 99(58), 71(46), 70(23), 69(31), 67(35), 55(38), 43(50), 42(69), 41(100), 39(69). The reaction products 4 and 5, were separated and purified by TLC. IR spectra of both compounds showed strong absortion in the carbonyl region, the 4 compound at 1728 cm $^{-1}$ and the 5 compound at 1735 cm $^{-1}$.

The spectral data of $\underline{5}$ are in accordance with the δ lactonic structure of the 5-cyclopentyl-5-hydroxypentanoic acid lactone, while those of $\underline{4}$ exclude any γ or δ lactonic structure. In this case, the data are more in accordance with the 4-(2'-hydroxycyclohexyl) butanoic acid lactone structure.

The $\underline{4}$ and $\underline{5}$ structures were confirmed by syntesis. The compound obtained by Baeyer-Villiger oxidation of the 2-cyclopentylcyclopentanone, (available from cyclopentanone¹) with m-ClPhCO₃H in Cl₃CH at 25°C, showed the same chromatographic and spectroscopic properties as the product $\underline{5}$ obtained by electrolysis. Baeyer-Villiger oxidation of 1-decalone gave a product with the same spectroscopic and chromatographic properties as product $\underline{4}$ obtained by electrolysis.

The electrolysis of 0,3 g of 1-decalone (6 Faradays/mol circulating with 0,3 A/cm^2 of current density) was carried out. At the end of each electrolysis, the solvent was removed on a rotary evaporator; water was added and the solution was acidified with concentrated hydrochloric acid, then extracted with ether.

The yields, determined by the standard internal chromatographic method, gave 47% of compound 5 and 14% of compound $\frac{4}{3}$.

The formation of compounds $\underline{4}$ and $\underline{5}$ is rationalized in scheme 1. The step 1--2 is supported by the fact that ter-alkoxy free radicals cleave to give a carbonyl group and an alkyl free radical²,³. The intermediate $\underline{3}$ undergoes two processes: A) cyclisation to ε lactone $\underline{4}$ and \underline{B}) ring contraction and cyclisation to give δ lactone $\underline{5}$.

Scheme 1

REFERENCES

- 1. "Beilsteins Handbuch der Organischen Chemie" Syst. n°617-618, Band VII, Springer-Verlag, Berlin (1931), (1968).
- 2. K. Maruyama and K. Marukami, Bull. Chem. Soc. Japan, 41, 1408(1968).
- 3. D.G. Heare and W.A. Waters, J. Chem. Soc., 2552(1964).

(Received in UK 16 November 1981)